Colliding Neutron Stars Created a Kilonova Sphere So Perfect It s Shocked Physicists@TheCosmosNews
#thecosmosnews Perfect Explosion’: Merger of Neutron Stars Creates Spherical Cosmic Blast When neutron stars collide they produce an explosion that, contrary to what was believed until recently, is shaped like a perfect sphere. Although how this is possible is still a mystery, the discovery may provide a new key to fundamental physics and to measuring the age of the Universe. The discovery was made by astrophysicists from the University of Copenhagen and has just been published in the journal Nature. Kilonovae—the giant explosions that occur when two neutron stars orbit each other and finally collide—are responsible for creating both great and small things in the universe, from black holes to the atoms in the gold ring on your finger and the iodine in our bodies. They give rise to the most extreme physical conditions in the Universe, and it is under these extreme conditions that the Universe creates the heaviest elements of the periodic table, such as gold, platinum, and uranium. But there is still a great deal we do not know about this violent phenomenon. When a kilonova was detected at 140 million light-years away in 2017, it was the first time scientists could gather detailed data. Scientists around the world are still interpreting the data from this colossal explosion, including Albert Sneppen and Darach Watson from the University of Copenhagen, who made a surprising discovery. "You have two super-compact stars that orbit each other 100 times a second before collapsing. Our intuition, and all previous models, say that the explosion cloud created by the collision must have a flattened and rather asymmetrical shape," says Sneppen, PhD student at the Niels Bohr Institute and first author of the study published in the journal Nature. This is why he and his research colleagues are surprised to find that this is not the case at all for the kilonova from 2017. It is completely symmetrical and has a shape close to a perfect sphere. "No one expected the explosion to look like this. It makes no sense that it is spherical, like a ball. But our calculations clearly show that it is. This probably means that the theories and simulations of kilonovae that we have been considering over the past 25 years lack important physics," says Watson, associate professor at the Niels Bohr Institute and second author on the study. #kilonova #perfectsphere